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Abstract

We evaluate the accuracy of density functional theory quantum calculations of biomolec-

ular subsystems using a simple electrostatic embedding scheme. Our scheme is based on

dividing the system of interest into a primary and secondary subsystem. A finite difference

discretization of the Kohn-Sham equations is used for the primary subsystem, while its electro-

static environment is modeled with a simple one-electron potential. Force-field atomic partial

charges are used to generate smeared Gaussian charge densities and to model the secondary

subsystem. We illustrate the utility of this approach with calculations of truncated dipeptide

chains. We analyze quantitatively the accuracy of this approach by calculating atomic forces

and comparing results with full QM calculations. The impact of the choice made in terminating

dangling bonds at the frontier of the QM region is also investigated.
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1 Introduction

Enzymes are the most proficient catalyst known. They are able to accelerate reactions that take

as long as 78 million years to 26 milliseconds under ambient conditions corresponding to a rate

enhancement of 1017. How enzymes are able to lower the reaction energy barrier is still being

debated and a highly active area of study (see e.g.1–4). Quantum mechanical calculations of the

solvated enzyme with reactant would show how the energy barrier is being lowered but even with

modern computers this type of calculation is prohibitive. Most quantum mechanical studies of

enzymes use a model systems of the active site, typically a few residue sidechains and reactant, in

the gas-phase or with a continuum solvent (see e.g.5,6). Although these calculations can provide

useful insights they do not take into account the heterogeneous nature of an enzyme active site

which usually provides a significant contribution in lowering a reaction’s activation barrier or the

role dynamics can play in catalysis.7,8

Proteins are composed of amino acids linked into a linear sequence by amide bonds, also known

as peptide bonds, between the amino group of one amino acid and the carboxyl group of the next

amino acid. The side chains of the amino acids are diverse and can be polar or nonpolar, acidic or

basic, and aromatic or aliphatic. They are capable of carrying a net electrical charge depending on

the nature of the surrounding environment. These charges generate long range Coulomb potentials

which affect the electronic structure tens of Angstroms away. In modeling an environment made

of proteins and water, Coulomb effects will dominate long range interactions and can influence the

active site of a protein.

Due to the very high computational cost of quantum calculations, modeling protein systems at

the quantum mechanical level is restricted to rather small systems. While the active site, where a

quantum description is required to describe the chemical reaction, is often not very large, a realistic

environment surrounding that region is necessary if one hopes to attain useful information out of

a small active site calculation.8 Frequently, the active site is within the whole protein such that

isolating the active site for a quantum calculations (also called primary subsystem) would involve

"cutting" the active site from the remaining part of the protein. It is very likely that covalent bonds
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will need to be cut. A common method to create the isolated active site is to cut the covalent bonds

between the active site and the "environment" (also called the secondary subsystem) and terminate

these covalent bonds in the primary subsystem with hydrogens (link atoms) to satisfy valency.

Combined quantum mechanic/molecular mechanics (QM/MM) approaches have become widely

used (see e.g.9,10 for recent reviews) for modeling chemical reactions in large protein systems.

They allow the simulation of a large effective system using quantum modeling for only a small

subsystem, the active site, while the rest of the system is treated using a classical force field ap-

proach. Past studies using these methods were limited in the size of the QM region and utilized

semi-empirical hamiltonians such as AM1 or PM3. More recently, the self-consistent-charge den-

sity functional tight-binding method is gaining popularity for biological QM/MM studies.11 How-

ever, all these methods still face serious technical difficulties in describing the interface between

the QM and the MM regions when covalent bonds have to be cut, which is often the case in bio-

chemical applications. there QM/MM methods also require coupling of two completely different

models which leads to very complex simulation codes or codes coupling.

In this paper, we evaluate the accuracy of a simpler model, which avoids the whole MM force-

field bonded and Van der Waals interactions machinery, and is easy to implement in a QM code. We

investigate the quantitative effect of electrostatically embedding a QM subsystem into a classical

biomolecular mechanics system simulation. The QM computation for the active site is carried out

in the presence of a simple one-electron potential describing the electrostatic interaction with the

atoms of the secondary subsystem which accounts for the influence of the protein environment.

In our approach, the partial point charges associated to the secondary subsystem in a force field

model are used to build smeared Gaussian charge distributions which are then used to compute

an effective electrostatic potential. Such a model obviously leads to inaccurate forces for QM

atoms at the boundary of the primary subsystem where bonded interactions with MM atoms would

dominate, and the coordinates of these atoms should be frozen in a molecular dynamics simulation.

We focus however on the accuracy of forces deeper inside the QM region, at the active site of

interest. A similar study was carried out by Solt et al.12 in a full QM/MM framework where they
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attempt to assess in a systematic manner simulation errors at the center of the QM region as a

function of the size of that region. They showed that even with a full MM coupling, there are

significant errors in the forces affecting atoms near the edge of the QM region

By reducing the secondary subsystem to a simple electrostatic environment, the interaction

between primary and secondary subsystems is greatly simplified. In particular this scheme avoids

the introduction of additional parameters necessary for MM calculations such as the Van der Waals

interaction. While the dominance of the electrostatic effects is widely recognized in modeling a

biomolecular environment, a direct accuracy comparison with respect to a fully QM approach is

rarely found in the scientific literature. Also, partial atomic charges are typically parameterized

and static for MM calculations, and the use of those for the purpose of QM embedding needs to be

validated.

To address the difficulty of cutting and terminating the boundary region between the active site

and the remaining protein, we evaluate the quality of various schemes to partition a protein system

into a primary and secondary subsystem. We adopt the commonly used link-atom scheme,13 satu-

rating cut dangling bonds at the QM boundary with a hydrogen atom. While there are no definitive

rules about how to partition a biomolecular systems into QM and MM parts, some bonds are better

candidates than other bond for cutting and capping with a link atom. Since capping atoms are

usually H atoms (or pseudo H atoms) that form a σ bond with the QM system, the most favorable

bonds to cut are bonds with the similar characteristics.13 We will discuss and numerically evaluate

the accuracy of cutting covalent bonds at various locations near the amide moiety in the protein

backbone.

The purpose of this paper is to validate this simple electrostatic embedding approach by a quan-

titative evaluation of the perturbation introduced on a quantum mechanical subsystem of interest

when part of it is replaced by a one-electron potential. Since our goal is in molecular dynamics

simulations of the QM system, we focus on the accuracy of QM atomic forces away from the QM

boundary when peptide bonds are cut and the secondary subsystem is modeled as an electrostatic

potential. We study small systems such as dipeptides for which we can carry out a full reference
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QM calculation. We also pay particular attention to the problem of finding the optimal location

to cut covalent bonds. This provides an assessment of the accuracy of the scheme we use to con-

struct the one-electron potential describing the electrostatic environment, as well as a quantitative

comparison between various link-atom schemes used to cut and terminate covalent bonds.

2 Computational method

We use density functional theory (DFT) as the QM model. While DFT has known deficiencies, in

particular, to properly describe intermolecular interactions, especially van der Waals forces, it is

currently one the most suitable quantum approaches for large scale electronic structure calculations

in chemistry and solid-state physics (see e.g.14).

QM calculations were carried out using a pseudopotential finite difference approach for dis-

cretizing the Kohn-Sham equations. Electronic wave functions, potentials and the electronic den-

sity were described by their values at each grid point of a uniform real-space mesh covering the

computational domain, and a fourth order finite difference scheme is used to evaluate the Lapla-

cian in the Hamiltonian operator.15,16 Exchange and correlation were modeled using the PBE func-

tional.17 We assumed that we have a globally neutral periodic system and use periodic boundary

conditions.

One advantage of such a QM approach is the lack of basis set superposition error often present

in LCAO approaches. It allows us in particular to easily assess the accuracy of our model by

comparing full QM calculations with subsystems simulations. The DFT real-space finite differ-

ence approach is also very adequate for parallelism and can scale on a large number of proces-

sors,15 thus enabling calculations with a relatively large quantum region. For large systems, linear

scaling can be achieved using a localized representation of the occupied Kohn-Sham orbitals sub-

space.16,18 Note that Takahashi et al.19 have used such an approach before for QM/MM calcula-

tions of molecules in solution.

For the molecular systems in which we are interested, we extracted a subsystem and treated
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this subsystem at the quantum mechanical level. This requires properly terminating all the covalent

bonds cut during the extraction and also model appropriately the atoms outside the QM boundary.

Cutting out peptide chains was done at various locations along the chain. A few possible choices

were evaluated and are described in the next Section.

To model the part of the system not included in the QM simulation, we used a simple elec-

trostatic embedding. We employed the partial charges associated to each atom in a classical force

field approach.20 In several classical force fields, atoms belong to a charge group of total charge -1,

0 or 1. To avoid overlap between QM link atoms and MM charges, we excluded charge groups that

overlap with link atoms.21–23 Only charge groups that were fully cut out of the QM region and did

not overlap with the termini were included in the list of charges used to generate the electrostatic

potential. That usually meant excluding charges from neutral CHNH groups (backbone alpha car-

bon+hydrogen and amide nitrogen+hydrogen) immediately connected to a cut peptide bond. One

special case was the glycine residue where the "core" charge group also includes an additional H

atom (the side chain).

Instead of directly using the point charges associated to atoms outside the QM region, we

used smeared charges. For each atom a contributing to the electrostatic potential, we associated a

Gaussian charge distribution

ρa(r) = Za
e−r2/r2

a

π3/2r3
a

(1)

where Za is the classical force field partial charge of the atom, and ra is a radius associated to each

atomic species. Values close to the covalent radii can be typically used for that purpose. We used

the values listed in Table 1.

Such charge smearing has been used before, in particular for charges close to the QM boundary

in order to soften the interaction between atoms that are separated by only a short distance.24,25

Indeed, at short distance, the validity of a point charge representation is questionable. In the

context of this paper, as well as in a plane wave approach,26 such a smearing is a convenient way

of generating a charge density and a resulting Coulomb potential representable on a uniform mesh.

A total charge density associated with the atoms in the secondary subsystem was computed by
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summing up all these Gaussian charges

ρext(r) = ∑
a

ρa(r). (2)

This total charge density was evaluated at every grid point of the real-space mesh used in the quan-

tum calculation. The resulting Coulomb potential was calculated by solving the Poisson problem

−∇2Vext(r) = 4πρext(r) (3)

with periodic boundary conditions, by discretizing the Poisson equation on the real-space mesh,

the same used for electronic wave functions, by finite differences and solving the resulting linear

system by the multigrid method.27 Note that even if ρext may not correspond to a neutral charge,

the sum ρext + ρ , where ρ is the charge density of the QM part, is charge neutral. Thus, one can

solve Eq.(3) for the whole system to get the total electrostatic potential without difficulties related

to periodic boundary conditions by adding a uniform neutralizing background charge to ρext and

subtracting it from ρ in the QM calculation. Vext was computed only once at the beginning of the

calculation and added to the Kohn-Sham potential in the QM calculation.

Since our goal is in performing molecular dynamics for the QM system, we focus in the next

section on force calculations and compare forces computed in truncated systems in reference to

full QM calculations. Since we did not include MM atoms, we are obviously missing important

forces between atoms linked by covalent bonds at the QM frontier. To address this problem in a

molecular dynamics or geometry optimization context, the coordinates of some atoms at the QM

frontier should be frozen so that these erroneous forces would not be active.

Table 1: Radii used to generate Gaussian charge distributions
Species ra [Å]

H 0.40
C 0.73
N 0.71
O 0.80
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As is the case when solving the Kohn-Sham equations with a plane wave basis, the electronic

wave functions in a real-space finite difference method are in general not restricted to be local in

space. As pointed out in Laio, et. al.,26 carrying out such a computation in an external Coulomb

potential due to MM charges can potentially lead to the so-called electron spill-out effect. While

one must be aware of this issue, the calculations reported in this paper using the parameters tabu-

lated in Table 1 showed no measurable evidence of this phenomena.

3 Dipeptide studies

Ferre et al. showed that it is very difficult to apply the link-atom scheme when cutting amide bonds,

such as peptide bonds in a protein.28 To investigate various cutting procedures, we first quantita-

tively evaluate the effect of cutting and terminating a dipeptide with no net charge (Ala−Gly). To

measure the effects of the Coulomb potential associated to partial charges of atoms cut out of the

QM subsystem, we next study dipeptides with net charges (Arg−Asp).

3.1 Alanine-Glycine

We consider the dipeptide H−Ala−Gly−H (Figure 1). In this form (with the H-termini), the

compound is stable in gas phase and is charge neutral. We evaluate the effect of cutting the alanine

out of the QM calculation. More precisely, we evaluate the atomic forces on the glycine peptide

atoms after cutting out the alanine residue while properly terminating the cut peptide bond and

compare these forces with those computed for the full QM system. We compare the results using

the termini T−−H and T−−NH2. Note that a NH2 termini is equivalent to cutting the peptide chain

one bond away from the peptide bond and capping the dangling bond with and H termini. We also

look at the quantitative effect of including the Coulomb potential associated to the atoms cut out.

The Coulomb potential does not include the charges of the CHNH group removed since some of

the atoms would overlap with the termini.

Figure 2 shows the error introduced on the forces when cutting out part of the QM system
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Figure 1: Left: Dipeptide Ala−Gly and the corresponding charge groups (denoted by solid con-
tours). Right: glycine and charges substituted for alanine.

(the Ala residue). For all the atoms in the glycine part, the error is shown as a function of their

distance to the (removed) alanine atoms. Numerical results show that the most important aspect

of the cut is to properly terminate the cut peptide bond using an NH2 group instead of a simple

H atom. In comparison, the effect of including the electrostatic field due to the partial charges of

the removed atoms is very small. This is due to the fact that the peptide bond is not as simple as

the C−H bond. The peptide bond has two resonance forms which confers partial double character.

Analyzing the electronic structure of the NH2 and H terminated glycine using maximally localized

Wannier functions,29 one can see the different orbital character from the resulting two termini. The

NH2 terminated glycine has Wannier function centers that overlap those Wannier function centers

of the full system (Figure 3, left). The H terminated glycine, on the other hand, has a bond centered

Wannier function center compared to the two off bond Wannier function centers of the full system

(Figure 3, right). This confirms the observation by Ferre et al.28 that a cut peptide bond capped

with a simple H terminus is not a suitable approach.

Another interesting result is that optimizing the geometry of the termini in the electrostatic field

leads to worse geometry than optimizing in vacuo because the short distance between the termini

and the Gaussian charges modeling the environment results in much too strong a coupling. Thus,

optimization of termini will be done in vacuo for the test systems presented in the rest of this paper,

and bond cuts will be chosen one bond away from the peptide bonds.
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Figure 2: Absolute error on atomic forces in glycine residue when removing alanine. The lines
indicate exponential fits for cases with smallest error (in vacuo opt NH2-term with Ala Charges)
and largest error (H-term with Ala charges). The average errors are 9.7, 2.0, 9.7, 7.2 and 2.1 for
the 5 sets of plotted data. The first data points on the left correspond to the carbon atom of alanine
bonded to the termini. The next three data points correspond to the oxygen, the Cα of Gly, and a
hydrogen atom bonded to the Cα .

Figure 3: Centers of maximally localized Wannier functions near the peptide bond in Ala−Gly:
full QM dipeptide calculation result (black balls) compared with the glycine calculation with NH2
(left) and H (right) termini (yellow balls). The C−N−C sequence shown correspond to the C−N
peptide bond (glycine on right) followed by the Cα of alanine (removed in truncated system).
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3.2 Arginine-Aspartate

We now consider peptides with net electrical charges, both at their termini and in the side chain.

We start with the zwitterionic Arg−Asp dipeptide (see Figure 4) solvated in water. The atomic

configuration was taken from a snapshot of a classical molecular dynamics simulation. To define

the reference system, we first replace the water molecules (solvent) by the Coulomb potential re-

sulting from their partial charges according to the procedure described in Section 2. This potential

is sufficiently good to have a stable quantum system made of a dipeptide with net local charges.

A DFT calculation is carried out and atomic forces are computed for the whole QM system. We

verify that each maximally localized Wannier center for this system closely matches the corre-

sponding centers of the system solvated in water within 0.025 Å, accuracy. Next, we cut out one

of the two residues and replace it with the Coulomb potential resulting from the partial charges

associated to the atoms we have removed according to the procedure described in Section 2.

We began by removing Asp from the QM region (see Figure 5). The Arg residue remains intact

with a net charge of +2, while the Asp is replaced by an NH2 terminus and a Gaussian charge

distribution. The NH2 terminus is equivalent to a cut one bond away from the peptide bond capped

with a H atom. The geometry of the NH2 terminus is optimized without the electrostatic field

generated by Asp charges, according to the observation made in section 3.1. Then, the Coulomb

potential of the Asp charges minus the CHNH group, which overlaps with the terminus, is turned

on (net charge -2). DFT forces were evaluated and compared with the reference calculation for the

full dipeptide. Additionally, the DFT forces were compared to the result obtained when ignoring

the Coulomb potential due to Asp charges (see Figure 6). The inclusion of the Coulomb potential

represents a clear improvement over its deletion. The error is reduced from 5.1 to 1.6 kcal/mol·Å
on average, and the trend shows an even larger improvement for atoms further away from the QM

boundary. Not surprisingly, the error due to missing bonded forces dominate near the termini, while

the Coulomb effect is longer range. We also conclude that the error on forces decays quickly and is

within a tolerable accuracy about 3.5 Å away from the removed atoms. For comparison, geometry

optimization algorithms for quantum systems typically use tolerance of the order of 5 · 10−5a.u.
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(0.6 kcal/mol·Å).
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Figure 4: Dipeptide Arg−Asp and constituting charge groups.

We also carry out the same study for the case where Arg is removed and Asp is treated at the

QM level. The cut is made inside Asp where the NH terminal group is replaced by a single H (see

Figure 5). Again, we see a clear improvement when including the Coulomb potential associated to

the Arg charges (Figure 6). The error is reduced from 11.9 to 6.1 kcal/mol·Å on average, but the

trend shows a larger improvement for atoms further away from the QM boundary. Error is reduced

by a factor 10 at a distance 6.5 Å from the closest Asp atom.
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Figure 5: Truncated Arg−Asp dipeptide. Left: Arg peptide after removing Asp and replacing it
with an NH2 terminus. Right: Asp peptide after removing Arg and substituting a H terminus for
the dangling NH group.
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Figure 6: Absolute error on atomic forces on remaining atoms in Arg−Asp when removing Asp
(Left) or Arg (right), as a function of distance from closest atom in the removed peptide. The lines
indicate exponential fits for each set of results.

3.3 Aspartate-Arginine

We now consider the same peptide chain, but in reverse order, that is Asp on the left with a NH +
3

terminus and Arg on the right with a COO – terminus. In this case both residues have no net charge

since their respective terminus neutralizes their charge. We have, however, on both sides a large

dipole due to 2 groups with net charges compensating each other (see Figure 7). The same study

as in the previous section is carried out for this system. Cut out systems are shown in Figure 8.

Numerical accuracy of forces is plotted in Figure 9. While no net charge is cut out this time, the

importance of including the long range Coulomb effect of the removed atoms remains. Inclusion

of Coulomb charges from removed atoms reduces the error from 6.7 to 4.4 kcal/mol·Å for the

first system, and from 4.9 to 2.9 kcal/mol·Å for the second one. Again, we see that the error is

dominated by missing bonded forces close to the QM boundary, while taking into account long

range Coulomb effects allows to significantly reduce the error away from the boundary.
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(Left) or Asp (right), as a function of distance from closest atom in cut out peptide. The lines
indicate exponential fits for each set of results.
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4 Conclusion

In this paper we have presented an electrostatic embedding methodology for reducing QM calcula-

tions of protein systems to a small QM subsystem. The approach can be decomposed in five points:

1) cut and properly terminate peptide bonds, 2) optimize the termini atoms for the resulting QM

system, 3) make a list of removed atoms, excluding those in charge groups overlapping with QM

system, 4) associate each of these atoms to a Gaussian charge distribution, of charge equivalent to

partial charges associated in a classical force field. 5) compute Coulomb potential associated to

the sum of these charge distributions and use it as an external potential for QM calculation.

We found that the following scheme was appropriate to cut peptide bonds between the QM

inside "in" region and the outside "out" region: a peptide bond "in−CO−NH−out" is cut and ter-

minated as "in−CO−NH2", while the peptide bond "in−NH−CO−out" is terminated as "in−H".

This scheme leads to much more accurate results than a simple cut of the peptide bond capped with

a H link atom.

Our quantitative results show that the inclusion of the Coulomb potentials resulting from par-

tial charges of atoms cut out of the primary system improves systematically and dramatically the

accuracy of the calculated forces inside the QM region compared to an "in vacuo" environment.

Specifically, we observe that forces on QM atoms 3.5 Å or further away from the QM boundary

are quite accurate when using this procedure.

The present study shows that with a good electrostatic embedding model, QM atoms 2-3 bonds

away from the QM boundary experience forces very close to those they would experience in a

full QM calculation. This suggests that a simple electrostatic embedding model such as the one

described in this paper is appropriate to simulate the environment for quantum biomolecular sub-

systems. When mechanical coupling with MM atoms is not included in the calculation, one can

freeze the atomic coordinates of a "shell" of quantum atoms at the frontier of the quantum region.

The resulting quantum subsystem is thus mechanically constrained at its boundary and embedded

in a long range external electrostatic potential, mimicking the surrounding protein.

As mentioned in Section 2, a Generalized Gradient Approximation (GGA) was used to model
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DFT exchange and correlation in our quantum calculations (PBE functional17). The methodol-

ogy presented in this paper for dealing with long electrostatic effects and environment modeling is

however not limited to this functional and recent — and future — progress towards better function-

als could be incorporated into the quantum modeling to improve the level of theory. In particular,

biological systems like those considered in this paper could benefit from a better treatment of dis-

persion energy using for instance a Van der Waals Density Functional.30 Hybrid-GGA such as

B3LYP,31 based on exact-exchange energy terms, are also quite popular in the field. While exact-

exchange is not as straight forward to implement in a real-space finite difference context as it is for

a Gaussian basis set, recent progress in the field have shown that it is now possible to implement

such functionals in a Plane Waves code.32 Even if exact-exchange makes such an approach com-

putationally quite expensive compared to local density or generalized gradient approximations, the

methodology described in Ref.32 is directly applicable to a real-space finite difference approach

and should be considered as a possible future research direction.
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